Tunable Diode Laser Technology

Direct Adsorption

Ron Eddleman
AAS Regional Sales Manager
Presentation Overview

TDL Basics - How does it work
What can be measured
Types of installations
Products
Combustion Control
What is TDL

Tunable Diode Lasers

How Do They Work
“A laser diode, or LD, is an electrically pumped semiconductor laser in which the active medium is formed by a p-n junction of a semiconductor diode similar to that found in a light-emitting diode.

The laser diode is the most common type of laser produced. Laser diodes have a very wide range of uses that include, are not limited to, fiber optic communications, barcode readers, laser pointers, CD/DVD/Blu-ray reading and recording, laser printing, scanning and increasingly directional lighting sources.¹

¹Text and pictured from (http://en.wikipedia.org/wiki/Laser_diode)
Basic Requirements
- Laser
- Detector
- Optics
- Electronics
- Pressure
- Temperature
Single Peak Spectroscopy

What does a filter photometer measure?
All peaks in this area

What does a TDL Spectrometer measure?
One single peak

The Tunable Diode lasers have very narrow wavelength emission
The linewidth is typically only around 0.00004nm
The laser scans the bandwidth, measuring the peak & baseline
TRUEPEAK 200/ 220 performs **1000 scans per second**

Direct Peak Area integration: accurate regardless of shape of peak
Operation – TruePeak TDL

Coarse wavelength adjustment
Laser @ a fixed temperature
Cooler@ a fixed temperature

Fine wavelength adjustment
A current ramp is fed to the laser

Light is transmitted
It passes through gas to be measured

Light is absorbed by the target gas
The amount = analyte concentration

The light is then focused on the detector
The amount of light at detector = gas concentration

It also provides Diagnostics on the measurement

Current ramp to laser

Current

Time

Current ramp to laser

Current

Time

Signal at Detector

Lets Measure Oxygen (O2)
Light absorbed by the target (Peak)
The peak is proportional to the analyte concentration

Enlarged to show concentration detail

Analyzer flips the Peak. Why?
Makes it easier to comprehend

Flattened Detector Signal
There are 2 highly common measurement techniques. They are-
Direct Absorption (left spectra) and Second Harmonic or 2f (right spectra)

Changes in background gases affect the shape of the absorption peak
Competitor’s Second Harmonic (2f) peak height is AFFECTED
TruePeak uses Direct Absorption and Peak Area is UNAFFECTED
Direct Absorption = Area under Peak Stays the Same

\[\text{Area under Peak} = \]

\[= \]

\[\text{Area under Peak} = \]

\[\text{Direct Absorption Spectra (10\% \text{O}_2 \text{ in different background gases})} \]

\[- \text{O}_2 \]

\[= \]

\[\text{Direct Absorption Spectra (10\% \text{O}_2 \text{ in different background gases})} \]

\[- \text{O}_2 \]

TruePeak

\[\text{O}_2 \text{ in changing background gas concentrations} \]
Second Harmonic (2f). Peak height is affected

Yes you can try to fit changes into lab determined curves to adjust for changes in:

- Background gases
- Process Temperature
- Process Pressure

Clearly this is not perfect. It is however better than doing nothing.

It does however lead to false hopes that the compensation is working correctly.

Who can predict what samples are the proper ones to take?

Second Harmonic Spectra
(10% O₂ in different background gases)
TruePeak - Length Does Matter
What Can TDL Measure?
In Situ Analysis without sample conditioning – May be configured as Extractive
Fast Response (5-20 seconds)
Interference Rejection (high and variable light obstruction)
Process Pressures up to 20 Bar (Application Dependent)
Process Temperature up to 1500°C+ (Application Dependent)
Optical Measurement, no sensor contact with process
Aggressive Options EX: high particulate content, corrosives etc
Flexible Installation Options
Class 1, Div 2 Group B, C, D when purged
ATEX Category 3 Zone2
Safety Integrity Level:
SIL 1 Assessed
Gases measured:

- \(O_2\), \(CO\), \(CH_4\), \(CO_2\), \(H_2S\), \(NH_3\), \(HCN\),
- \(HCl\), \(HF\), \(C_2H_2\), \(H_2O\), \(CO\%+CO_2\%\),
- \(NH_3\) ppm + \(H_2O\%)\, \(CO+CH_4\)
Extractive Analysis sample conditioning may be needed
Fast Response (5-20 seconds)
Interference Rejection (high and variable light obstruction)
Sample gas temperature up to 120°C (248°F)
 (When ambient temperature is ≤ 40°C)
Sample Pressures up to 7 Bar (100psi)
Optical Measurement, no sensor contact with process
Aggressive Options EX: high particulate content, corrosives etc
Flexible Installation Options
Class 1, Div 2 Group B, C, D when purged
Gases measured: O₂
 Max Range 0-100%, Min Range 0-1%
More gas measurements to come
Extractive Analysis sample conditioning may be needed
Fast Response (7-20 seconds)
Interference Rejection (high and variable light obstruction)
Sample gas temperature up to 100°C (212°F)
Ambient temperature upper limit is 40°C – Designed for controlled environment
Sample Pressures up to 7 Bar (100psi)
Optical Measurement, no sensor contact with process
Multi-pass Integrated Cavity Output Spectroscopy (ICOS)
 Optical Path Lengths up to 10,000 meters for high sensitivity
 Sub-ppb detection limits
Flexible Installation Options
Class 1, Div 2 Group B, C, D when purged
Gases measured:
 C₂H₂, NH₃, CO, H₂S
 C₂H₂ + m-C₂H₂
 C₂H₂ + NH₃
Installation Options Insitu

Installation Options

![Image 1](image1.jpg)

![Image 2](image2.jpg)

Proprietary info goes here...
Installation Options

• CROSS STACK/PIPE (IN-SITU)
 – Measurement across the process
 – Path integrated measurement
 – Validation options
 » Off line verification/calibration with calibration cell
 » On line verification with dynamic spiking (bump cell)
Installation Options

BYPASS LEG
- Process flow through measurement leg
- or-
- Process slipstream through measurement leg
- Allows isolation from process
- Validation options
- Large diameter pipe run
 - Isolate from process, flow gas standard
 - On line verification with dynamic spiking

FLOW CELL
- Pull or push sample through flow cell
- Validation options
 - Isolate from process, flow gas standard
INSITU ALINGMENT

- The analyzer laser beam must be able to pass from one side of the process to the other.
- The flanges and nozzles must be within +/- 2 Degrees of center line.
The Direct Adsorption Advantage

CO₂, N₂, He

TruePeak Spectra
(10% O₂ in different background gases)
UTILITY PANEL

A **Utility Panel** provides a central location for:

- Nitrogen supply for purges
- Validation gas supply
- Purge control
- Validation control
- 110 VAC line power in and 24VDC out to each analyzer
- Analog signals
- Digital signals
- Analyzer interface

Yokogawa supplies a single interconnect cable that connects the Utility Panel to the Launch unit for power and signal requirements.

Utility Panels for 1 to 4 analyzers are available.
Questions?
Combustion Control Applications
Measurement and Control Goals

Efficiency
- Minimize excess O_2/CO

Throughput
- Minimize heat capacity

Emissions
- Reduce NOx, CO, CO$_2$

Safety
- Avoid fuel rich conditions
- Identify burner flame out
- Identify process tube leaks
Oxygen Analysis Methods

Combustion oxygen is dominated by **zirconia based analyzers**

Low cost, reliable

Analyzers generally divide into three types

- **Close coupled extractive** (CCE). Sensor is removed from the process to allow higher gas temperatures

- **In-situ with heater**. Sensor is in the process, limited to ~700°C

- **In-situ w/o heater**. Allows higher gas temperature, no measurement at lower gas temperatures
Zirconia Measurement Considerations

Placement

- Oxygen concentrations can have high distribution in large systems (vertical and horizontal)
- Vertical distribution is due to tramp air (air leaks)
- Horizontal distribution is due to burner variations and flow effects
- Placement is critical to allow control, distributions can be 50% to >100% of the average excess oxygen from the burners
- Errors for low temperature in-situ probes placed further away from the burners are dominated by tramp air effects
- Errors for high temperature CCE analyzers are dominated by burner effects. Multiple analyzers are typically installed. Decisions on which values to use are significant (low, average)
Zirconia Measurement Considerations

Speed
- Sensors have fast response (5-10s typical). Filters and diffusion elements can significantly affect response time (can be tested).

Interferences
- Any combustible gases in the process (CO, HC’s, H₂, etc) will burn with oxygen at the sensor, **consuming oxygen and forcing the measurement low**.

Example: (5% O₂ in the presence of 1% C₃H₈)

\[\text{C}_3\text{H}_8 + 5\text{O}_2 = 3\text{CO}_2 + 4\text{H}_2\text{O} \]

5% O₂ level would read “zero”
CO Measurement Methods

The Past

Solid State Sensors (combined with ZrO$_2$)
- Thick/thin film
- Catalytic bead

Optical
- NDIR, Gas Filter Correlation
Combustion Analysis

Combustion systems are changing:

- Emissions limits are lower. Low NOx burners have reduced CO emissions. Measurement is more difficult.

- Furnaces are larger with more burners. Catching breakthrough from a “bad” burner requires improved sensitivity.

- NOx emissions can limit system operations.

- Efficient combustion is critical in allowing maximum firing rates.

Increasing cost of fuel and feedstock puts a higher emphasis on combustion control.

Efficiency = Lower Fuel Costs + Higher System Throughput
CO Measurement for Efficiency

CO breakthrough determines the ideal control point, prior to breakthrough:

- Highest efficiency
- Highest temperatures produced
- Combustibles are consumed

CO trim control can deliver optimum efficiency and flame temperature while remaining safe

CO levels from burners have been a moving target:

- Older burners CO levels 100’s of ppm
- Low NOx burners CO levels <50ppm
- Ultra low-NOx burners CO levels <10ppm
Efficiency Measurements

Oxygen
- Primary combustion efficiency measurement. Easy to use for control
- Typically also used as safety measurement

CO
- Ideal set point measurement (for excess air)
- Pre-cursor to combustibles breakthrough

Graph:

- **FUEL RICH**
 - CO & Combustibles
 - Unsafes CO “VIOLATIONS”
 - CO2 Excursions
 - Efficiency Losses

- **AIR RICH**
 - Efficiency Violations
 - NOx “VIOLATIONS”
 - Efficiency
 - CO2
 - O2

% EXCESS AIR

-20 -10 0 10 20
What is the Correct Excess Oxygen Value?

The lowest possible without:
- Compromising safety (combustibles)
- Generating CO

Absolute level depends on conditions
- Different fuels
- Variable heat content of fuel
- Type of burner
- Humidity changes
- Density variation
- Varying loads
- Fouling of burner system
- Mechanical wear of combustion system

CO Measurement can determine O_2 setpoint
TDL for Oxygen

TDL is seeing increased use in combustion oxygen measurements

- Path average measurement reduces distribution errors
- No interference from combustibles or CO
- No potential ignition source during upset conditions
- Fast response (5 seconds)
- Ability to provide Measurement in Gas Temps up to 1500 C
Measurement Suite using TDL

Efficiency & Emissions
- O_2/CO to minimize excess air, maximize efficiency and reduce emissions

Fuel rich burner conditions
- CO levels increase as a precursor to hydrocarbon breakthrough

Burner flame out
- Temperature drops rapidly*
- Hydrocarbons (methane) increase rapidly
- Oxygen increases rapidly
- Moisture drops rapidly*

Process tube leaks
- Moisture may increase (steam cracking)*
- Hydrocarbons increase (methane)
- Oxygen may not change significantly
- Temperature may not change significantly*
- CO may not change significantly

*Consult Yokogawa for Temperature, CH₄, and H₂O. These are application dependant.

Cool Temperatures but CO Reaction is nearing completion
Simultaneous TDL measurement of $O_2 + CO$

Operator Test. Adjust O2 downward to cause CO breakthroughs.

First breakthrough. Operator increases O2 and CO goes down.

Second breakthrough. Operator increases O2 and CO goes down.

Its Reproducible
- NOx limits can result in firing rate (capacity) limits
- NOx credits can be sold
- NOx is formed in the combustion process through reaction of nitrogen and oxygen in burner air feed
- Reducing excess air, reduces nitrogen and oxygen, resulting in reduced NOx emissions
- CO₂ emissions are also reduced through efficiency improvements
- CO emissions can be measured and controlled near real time
Three Conditions present safety concerns . . .

- **Fuel rich burner conditions**
 - CO levels increase as a precursor to hydrocarbon breakthrough

- **Burner flame out**
 - Temperature drops rapidly
 - Oxygen increases rapidly
 - Hydrocarbons (methane) increase rapidly
 - Moisture drops rapidly

- **Process tube leaks**
 - Moisture may increase (steam cracking)
 - Oxygen may not change significantly
 - CO may not change significantly
 - Hydrocarbons increase (methane)
 - Temperature may not change significantly

Measuring and understanding furnace conditions (indicated in red) can help identify safety concerns and their causes.

This can only be accomplished by having enough measurements points to discriminate between differing safety concerns.

O₂ and CO measurements are not sufficient.

Solution: Measurement Suite using TDL (Patent pending)
Application Specific Issues

Large Scale Combustion (Furnaces and Heaters)

- **Path vs. Point** decision (O₂ and CO)
- Measurement location (**distribution, tramp air**)
- **Response time** needs (safety + control)
- **Control method** (single air control, multiple fuel controls)
- **Safety issues** (Ignition sources, combustibles measurement)
CO breakthrough determines the ideal control point, prior to breakthrough:
- Highest efficiency
- Highest temperatures produced
- Combustibles are consumed

CO trim control can delivery optimum efficiency and flame temperature while remaining safe

CO levels from burners have been a moving target
- Older burners CO levels 100’s of ppm
- Low NOx burners CO levels <50ppm
- Ultra low-NOx burners CO levels <10ppm
Conclusion

Combustion systems are changing, we need to adapt to the new issues:

- Emissions limits are lower.
- Low NOx burners have reduced CO emissions. Measurement is more difficult.
- Furnaces are larger with more burners. Catching breakthrough from a “bad” burner requires improved sensitivity
- NOx emissions can limit system operations. Efficient combustion is critical in allowing maximum firing rates

Increasing cost of fuel and feedstock puts a higher emphasis on combustion control.

~ Lower Fuel Costs + Higher System Throughput ~
Questions

O_2 CO TDL CO_2 TDL

CO O_2